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Abstract—A general formulation of large deformation analysis of plastic and viscoplastic
problems is presented first. The equilibrium equations are derived from an incremental varia-
tional formulation using the Lagrangian mode of description of motion. The symmetric Piola—
Kirchhoff stress and Lagrangian strain are used in all the constitutive relations. Using degenerate
isoparametric elements, permitting relaxation of the Kirchhoff~Love hypothesis, the procedure
is specialized for the finite element analysis of shells of revolution subjected to axisymmetric
loading. A modified incremental method, which applies an equilibrium correction at each step, is
used for the solution of the linearized incremental equilibrium equations. Two approaches are
presented for adapting the viscoplasticity formulation to provide inviscid plasticity solutions—
one involving the extrapolation of results as the viscosity coefficient tends to infinity, and the
other in which plasticity solutions are obtained by using time as an artifice in the viscoplastic
analysis until equilibrium states are achieved at each succeeding load level. A detailed study of
the nonlinear behavior of a torispherical pressure vessel is presented to illustrate the effectiveness
of the numerical techniques.

1. INTRODUCTION

The finite element method has been used successfully in recent years in the development of
efficient numerical techniques for the nonlinear analysis of deformable bodies. Several
authors have considered the combined effect of material and geometric nonlinearities,
notable among these being Marcal[l], Yaghmai[2], Hofmeister et al.[3] and Larsen[4].
However, very little attention has been paid to the study of practical problems involving rate
dependent deformations. The classical inviscid plasticity theory is inadequate for dealing
with such problems and recourse must be made to theories reflecting strain rate sensitivity.
Constitutive laws have been proposed by several authors for rate sensitive materials.
These have been summarized and discussed by Perzyna[5], Lindholm[6] and Cristescu[7].
Although many experimental studies have been reported[8-12], application of finite element
methods to this class of viscoplastic problems is lagging far behind and literature in this
field is almost nonexistent, except for the work of Zienkiewicz and Cormeau[l3] which
studies some simple problems.

A general formulation is presented herein for the large deformation analysis of plastic and
viscoplastic problems. Virtual work expressions written using the Lagrangian mode of
description of motion lead to the incremental equilibrium equations. The classical inviscid
theory of plasticity using von Mises yield criterion as well as the viscoplastic laws taking
into account strain rate dependent deformations are both considered. While the tangent
stiffness method is used to treat elastic—plastic problems, an initial strain approach is used to
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take into account viscoplastic material behavior. The finite element idealization is based on
the degenerate isoparametric elements, permitting relaxation of the Kirchhoff-Love Hypo-
thesis, and the numerical method presented is specialized for the analysis of shells of
revolution under axisymmetric loading. An equilibrium correction is used at each step to
improve the accuracy of the incremental solution procedure. The nonlinear behavior of a
torispherical pressure head subjected to uniform internal pressure is studied and elastic—
plastic as well as elastic—viscoplastic solutions are presented to demonstrate the effectiveness
of the numerical techniques. The procedures for obtaining elastic-plastic solutions using the
viscoplasticity formulation are also shown to yield very good results.

2. KINEMATICS

The path of deformation of a three-dimensional body may be described by considering the
three configurations shown in Fig. 1. The initial configuration is denoted by B,, the current
by B,, and a neighboring configuration to B, is indicated by B,. A fixed, orthogonal cur-
vilinear coordinate system with coordinates x! and base vectors G; is associated with con-
figuration B, while B, is described by x’ and g;, and B, by X* and 7,, all the indices having
the range 1 to 3. The coordinate system X' will be assumed to be a global system in which
the motion is described.

CURRENT CONFIGURATION

INITIAL CONFIGURATION

" FINAL" CONFIGURATION

Fig. 1. Description of motion—Configurations of a body in its path of deformation.

The position of a generic material point in By, B, and B, is described by X, x and X,
respectively, where

x=X+"'u (1a)

Xx=X+*u=x+2u—'u=x+u (1b)

Here 2u and 'u are the total displacement vectors in B, and B, respectively, and u the
incremental displacement from B, to B,. In this notation, the Lagrangian strain in B, is

definedt as
2'Epy ="u 4 tuy g+ tug tug (2a)

1 For the sake of simplicity, rectangular Cartesian coordinates are used when component forms are
written; capital indices indicate that components are relative to B, .
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Similarly, the Lagrangian strain in B, can be written as
2%Eyy =2up s+ 2uy p + Pug ug s - (2b)

The strain increment from B, to B,, referred to the initial configuration B,, is obtained
simply as

2Eu = 2(2Eu - 1Eu) (3)

Substituting Equations (2a, 2b) into (3), and using the relation ?u = 'u + u from (1b), one
can get

_ 1 1
2E;; =up g+ uy p+ ug ug pyFug pug, g+ ug, plg g )

The strain increment E;; may be decomposed into

Ey=en+ny (5

where e;; and 7, are the linear and nonlinear parts, respectively, and are defined as
2epy =y, + uyp + Ug ug, gp g [,y (6a)
2= uK,luK,J' (6b)

3. INCREMENTAL EQUILIBRIUM EQUATIONS

The incremental equations of equilibrium are derived by taking the difference between the
virtual work expressions in configurations B, and B, written with respect to a common
reference state. The Lagrangian mode of description of motion is used in this paper, and
involves the use of initial configuration B, as the reference state. The details of derivation
may be found in Refs.[14-16]. Neglecting inertia and body forces, the incremental virtual
work expression may be written as[16]

[ (SuwoE, +'Syonydv={ ouwyda—[ ou'tda )
Bo 0B 171

where t, 2t are traction vectors in B, and B,, respectively, and dB; refers to the surface of
B; where surface tractions are specified. dV is the volume element in B,, da, dv are the
infinitesimal surface and volume elements in B,, and the equivalent elements in B, are
denoted by da, di. The increment in the symmetric Piola—Kirchhoff stress tensor is defined as
S = 28 — 'S and obtained in terms of E through a linear transformation tensor C, i.e.

S =CE. ®

Since S is nonlinear in u, substitution of Equation (8) into (7) results in nonlinear equilib-
rium equations. A linearized form of (7) is obtained when E is replaced by e in (8). The
internal stress field obtained using the linearized equations does not necessarily equilibrate
the applied loading. The out-of-balance force may be accounted for, and improved con-
vergence obtained, by adding a residual loading term to the right-hand side of Equation (7)
which then becomes

1
[ (Sisder +'Spyom)dv = [ our’t,da— [ Sy ey dv ©)
Bo oB3 Bo
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where the second integral on the right-hand side represents the force which equilibrates the
internal stress field. In the displacement formulation of the finite element method, the left-
hand side gives rise to the well-known incremental and geometric stiffness matrices.

The first integral on the right-hand side represents the applied loading in configuration B, .
This integral must be transformed from 0B, to 0B, and specialized for the cases of conserva-
tive and nonconservative loading. Tnis problem has been discussed earlier {16-18]. Assuming
the displacement increments u to be small compared to 'u, and the rotations associated with
u to be small compared to unity, this integral is transformed[16] for nonconservative
loading of the pressure type into
2o 2 0X, 0X,;0X, Oug
— “p oy (

S i ——) N, d4 (10a)

2By P Oxy  Oxgx 0xy; 0Xy

and for conservative loading into

0X, 0X,0Xy ug

Sutt; (— S ) d4 (10b)

4By 5x1 (3)6,( 6xj aXM

Here ?p is the pressure on a surface element in B, and *#, the components of 2, the traction
vector in B, measured per unit area in B, relative to the convected base vectors in B,.
The second terms in the parentheses of the two expressions are linear in u and give rise to
additional stiffness terms which are nonsymmetric. For most engineering applications, the
norms of these terms are small compared to the norms of the stiffness terms in Equation (9).
Hence their effect on the total stiffness of the system is small and they are neglected from
further consideration, especially in view of the significant additional computational effort
needed to solve a set of equations with nonsymmetric coefficient matrix.

3.1 Modification of virtual work expression for viscoplasticity

The application of the incremental virtual work expression of equation (7) for viscoplastic
material behavior is based on the following assumptions:

(i) The additive decomposition law is valid for the Lagrangian strain rate tensor, i.e.

E,; = Ej; + Eff (11)

where Ef;, the instantaneous strain rate, and E%®, the viscoplastic strain rate, are assumed
to be defined by constitutive relations and not given kinematic interpretation. For suffi-
ciently small time steps, a similar equation is valid for strain increments. Although additive
decomposition of strain rates is not the only method of decomposing kinematic variables,
it is the most convenient form for use in a Lagrangian description. A comparative discussion
of the many different approaches toward the kinematic decomposition of finite inelastic
deformations has been presented by Larsen[4, 19].

(i1) There exists a linear relationship between the increment of Piola-Kirchhoff stress and
the instantaneous strain increment, i.e.

Su = CIJKL Eiu (12)

The instantaneous strain increment E}; equals the elastic strain increment EE, in the case
of viscoplasticity. E}? vanishes for problems in classical inviscid plasticity wherein the
increment in instantaneous strain rate is decomposed into elastic and plastic components,
i.e.

E; = Ef, = Ef, + E;. (13)
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The viscoplastic strain rate is assumed to be independent of the stress rate and the
viscoplastic strain increments are taken into account in the equilibrium equations in terms
of an initial strain formulation. Combining equations (11, 12) gives

Siy = Cryxi(Exr — Ex}) = Si; — 817 (14a)
where

Sty =CrxrLExp, Skt = Cpyx  EXF (14b)

may be defined as the instantaneous and viscoplastic stress increments, respectively, and
possess the same invariance properties as S;;. The incremental virtual work due to the
internal stress field may then be modified by the substitution of equation (14a) for the stress
increment S;; into the left-hand side of equation (7), i.e.

Wy — W, = [ [S1,0Es; + (*Syy — SiDomsy — Sifder1dV. (152)
Bo

It can be seen from equation (15a) that a viscoplastic pseudo-loading term as well as a
contribution to the geometric stiffness arise as a result of consideration of the viscoplastic
strain in the formulation. If the linearized form given in equation (9) is used instead of (7),
one obtains

X, — oW, = [S1s0ers + 'Sty 0nyy — STF deys1dV (15b)
Bo

which exhibits only the viscoplastic pseudo-loading term as a result of the initial strain.

4. INCREMENTAL CONSTITUTIVE RELATIONS

The incremental expression of virtual work given in equation (9) is not restricted to any
particular constitutive laws of material behavior. The next step in the theoretical formulation
is to obtain incremental constitutive laws in terms of the Lagrangian strain tensor and the
2nd Piola-Kirchhoff stress tensor to be used in conjunction with the virtual work expression.

4.1 Elasticity

The incremental constitutive equations for an elastic continuum are well known and take
the form

Spy= CIJKL Eg; (16)
where the stress—strain transformation tensor for isotropic, linear elastic materials is given by
Crsxr = Ersxr = 181k 851 + 611.8,5) + A6y, 6k 17

with 4 and p being the Lamé constants.

4.2 Plasticity

The incremental theory of plasticity, using the associated flow rule with von Mises yield
condition and isotropic hardening, is adopted in this paper as the basis for establishing the
constitutive equations for plastic strain increments. The extension of the infinitesimal
theory of plasticity to the special case of small strains, large rotations is based on the use of
the 2nd Piola—Kirchhoff stress and the postulate that the physical components of the
Cauchy stress tensor in surface coordinates of the deformed shell are approximately equal
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to the components of the P-K stress in the undeformed configurationf4]. It follows from
this that the mathematical representation of the yield function is the same in both the Cauchy

and P-K stress spaces.
For an initially isotropic material, the von Mises yield condition in the current configura-
tion B, is expressed as

F('Spy) =FJy)=J, =k? (i8a)
or
f=J,—k*=0 (18b)

where the yield function depends on J,, the second invariant of the deviatoric stress tensor
15,,, and k, the yield stress in pure shear. Using isotropic hardening, the subsequent yield
surfaces can be written as

f= F(ISIJ) - H(lEfJ =0 (19)

where H is a hardening parameter. This parameter may also be expressed in terms of the
strain hardening parameter{20] which can be determined from uniaxial tension test.

Following[20], it is possible to obtain an expression for the incremental plastic strains in
terms of the increments in total strains by combining the associated flow rule

'Ef, =y ; A a non-negative scalar, (20a)
0'Sy;
the consistency condition
ap of  Lp
= = 0
Af =55 S+ ig ED (20b)

and the generalized Hooke’s law
Sty = Epnxe Eﬁz. = EyxilExr — §L)- (20c)

The resulting equation has the form

Ef; = Apgr Exs (21a)
where the transformation tensor A, is given by
of of
AL = h (21b)

5*{8—” m MNKL
and

of  of of o 19

T3S, 08y, T 'S, OER,

h~l
Finally, substituting equation (21a) into (20c), the incremental stress-strain law is obtained
as
Srs=CrxLExL (22a)
where

CIJKL = EIJKL - EIJ’MN AMNKL . (22b)
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For von Mises yield condition and isotropic hardening, the expressions in equations
(21b, 22b) can be simplified to

Apsx, = Quh/26 2)1§”1 SKL (23)
and
CIJKL = lu(él'l( 5!1'.. = 51L51K) + }'51.!' 5KL - gﬂzhlgl'.fl SKL[&Z (24)
2(1 I — i
where h = {1+ ) ,{=EJE, and § = \/ 3J,, the equivalent stress.

E[3 - {(1 —2v)]

In addition to the constitutive relations, it is also necessary to define a loading/unloading
criterion. Depending on the state of stress, the yield function f is computed and an elastic
state is indicated if f < 0 and a plastic state if f = 0; f > 0 constitutes an inadmissible state
in the theory of plasticity. Associated with the plastic state £ =0, three types of behavior
are recognized, viz. loading, unloading and neutral loading which are characterized by
f>0,f<0and f=0, respectively.

4.3 Viscoplasticity

The uniaxial behavior of a viscoplastic material was described by Malvern{21] in terms
of a reference static stress—strain function. The viscoplastic strain rate was considered to be
proportional to the excess stress above this reference, the proportionality factor being a
function of the material viscosity. Lubliner[22] proposed a squasilinear differential form of
constitutive equation that contained as special cases the rate-dependent theories of Soko-
lovsky[23] and Malvern[21], as well as the rate-independent theories of van Karman[24]
Rakhmatulin[25], and Taylor[26]. Also Lubliner modified Malvern’s theory by imposing a
limiting maximum dynamic stress-strain curve. Perzyna[27] gave a multiaxial form of
Malvern’s law by the generalization of a more restricted viscoplastic law introduced by
Hohenemeser and Prager[28]. Perzyna and Wojno[29] extended the multiaxial theory to
finite strains. The basic assumption of all these theories is that viscoplastic deformations
occur only when a certain threshold static yield surface is exceeded and below which the
response is purely elastic. Linearized versions of these viscoplastic laws have been used for
the analytical solution of some simple cases[30, 31], but more complex problems may be
considered by the use of numerical techniques such as the finite element methods.

Following Perzyna, the viscoplastic strain rate is assumed to be given by

oF

LEYP =5 < (F) >
1J Y ( ) 015“

(25)

where 7 is a material viscosity co-efficient, and & a scalar yield function. In terms of the
static loading surface, equation (19), the function & is expressed as
_F(Sy) - HCE) _f

|~ = e—
S TNRCEDH A @)

The expression for the viscoplastic strain rate, equation (25), assumes that the material
obeys the von Mises yield criterion with isotropic hardening and associated flow rule for
static deformations, and equation (26) implies that the visco-plastic strain rate depends on
the amount by which the static loading surface is exceeded. The notation < ) in equation (25)
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means that

O(F) when ®(F) >0

@FN =0 when ®(F) < 0. @)

In other words, viscoplastic deformation occurs only when ®(F) exceeds zero. Different
functional forms have been proposed[32] for @ to describe the process and the simplest form
is chosen in this study, viz.

OF)=F. (28)

It should be noted that &# > 0 constitutes an inadmissible state in the theory of inviscid
plasticity (the plastic state being identified by # = 0) but in viscoplasticity # > 0 is admis-
sible and indicates viscoplastic flow. Using equations (26, 28) in (25) and introducing the
oF  3'§y,
'Sy 2\/ ;]; ’

1EVP¢-(\/E—H) e (\/372—11)ls
s

__y —_— — — —
v H /2/35, 2 H./3\ 3,

expression[20], for the partial derivative, one obtains
p

or,
H\ . 3J,
Y _(1— _)ls,, when Y2 1o
e _ JHI3N 30 "
V3,
hen Y2 -1<0 29
0 when = (29)
3
where y——-%—l.

A dynamic yield criterion can be obtained by squaring both sides of equation (29).

. , 2 H \? o
LEYPLEYE = (1— -) 15,18,
37,

S
or
: :
1= g —\/1;72) &
and
Vh= 5 /3~ H) = #y (30)
or
NN A H(Lf v1) (1)

where I, is the second invariant of the viscoplastic strain rate tensor, and equation 31
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represents and expanded yield condition for rate-sensitive materials. It is clear that as
y — o0, equation (31) reverts back to the static von Mises yield condition. Equation (29) can
now be written as

1pVP Y \/1_2/7’ 1g
Epy = -—( — ) St (32)
H//3\1 + /Ly
Since from equation (30) \/72 = %7y, one gets
. F \,=
IEVP = 14 _ ( )IS
N (e (33

Again, as y — 00, it is seen from equation (32) that these equations represent inviscid
plasticity with 1 = V/ 31,/H. Thus the usefulness of this viscoplastic model is not limited to
rate-sensitive behavior alone but can also be taken advantage of to obtain elastic-plastic
solutions for quasi static cases. An alternative procedure towards this same end is presented
in Section 4.3.1 and both methods are demonstrated in the numerical example.

The computational scheme for viscoplastic analyses can now be described. Each load
increment applied on the body produces an instantaneous elastic strain, and the corres-
ponding stress increment can be computed as

S;J = SIEJ = EI.IKL EKL (34)

This increment is added to the total stress and the scalar function & is computed. If # <0
no viscoplastic deformations occur. If # > 0 the viscoplastic strain rates are computed as
per equation (33), and the increments in viscoplastic strains, for sufficiently small time
increments, are simply

EVP =1EY? dt. (35)
The total equivalent viscoplastic strain is computed and the new value of H, the hardening

parameter, is found using the uniaxial static stress—strain curve. The viscoplastic stresses are
computed as

S},JP =EpxL EH (36)
and the stress increments can be written as (see equation 14a)
Sy = SfJ - S}/J = SfJP - S}/JP (37
and the total stresses are
*Sy="Spy+ S (38)

The viscoplastic strain increments are then treated as initial strains as discussed in Section 3.

4.3.1 Use of viscoplasticity for plasticity solutions. It was shown in the previous
section that the viscoplasticity equations degenerate to give inviscid plasticity results as the
material parameter y tends to infinity. An alternative approach is to use any arbitrary value
of y but make use of time as an artifice and let an equilibrium plastic state, # = 0, be
attained as a result of “viscoplastic” deformations. The instantaneous response in this
procedure is purely elastic and the resulting state of stress might fall outside the static yield
surface, see Fig. 2. This creates the situation where & > 0 which is inadmissible in classical
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%2 " VISCOPLASTIC"

CREEP!
EQUILIBRIUM PLASTIC STATE F=0 ‘__/ F>0
- s >
STATE OF STRESS
AFTER
INSTANTANEOUS
LOADING

‘Va"

Fig. 2. “ Viscoplastic” deformations leading to a steady state plasticity solution.

plasticity but not in viscoplasticity. Now, *“ viscoplastic”” deformations are allowed to take
place with time and gradually the stresses are redistributed until the state of stress at no
point exceeds the yield surface, i.e. # = 0, Fig. 2. The resulting equilibrium state is then the
rate-independent elastic—plastic solution for the given problem.

5. FINITE ELEMENT ANALYSIS

The degenerate isoparametric shell element[33] is used in the present study for the finite
element discretization of the structure. Rather than considering complicated kinematic
relationships involved in shell theories, the element is assumed to be part of a solid, thus
permitting the use of simple strain-displacement relations from three-dimensional theory of
elasticity. Shear deformation is permitted in the element through relaxation of the Kirchhoff-
Love hypothesis and the kinematics of the element is based on the assumption that plane
sections initially normal to the middle surface remain plane, but not necessarily normal. In
addition, the displacement normal to the middle surface is assumed to remain constant
through the thickness.

Inclusion of shear deformation in the element permits both thin and moderately thick
shells to be considered. However, special integration schemes are required[34, 35] in the
case of thin shells to avoid errors arising from the existence of shear deformations in pure
bending modes for the lower order elements. The excessive strain energy in shear is less
important in the case of higher order elements, and an element with cubic displacement
field, Fig. 3, which found successful application in axisymmetric shell analysis[4, 16], has
been employed in the present study.

5.1 Geometric representation
The geometry of a cubic axisymmetric element, Fig. 3, is described by means of a coordin-
ate transformation[32]

cos 9,-} (39)

(=L o[+ 03 5 BOR{ S g

where ¢;(£) are the interpolation polynomials, #; the thickness at node i, and 0, the angle
between the r- and n-axes as shown in Fig. 3. The local natural coordinates (£, n) of any
point within the element are such that —1 < ¢ < +1 and —1 <y < + 1. While the ¢-axis
bisects the shell thickness, the n-axis is simply defined as an axis along which & = 0. The
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Z,W‘

(uj, wj,a;) DOF. AT NODE i

{r;,2;,8;) GLOBAL COORDINATES OF NODE i
» I,u

Fig. 3. Geometry of a cubic element, coordinate systems, and degrees of freedom.

outer and inner faces of the element are defined by = +1 and n = —1, respectively. For

I 1
the cubic element employed here, the nodes are located at £ = — 1, — 3’ + 3’ + 1 and the

interpolation polynomials are given by

b1.40) = 1 (1 F X1 +92)
“0)

9 - 2
¢’2,3(f) :1—6(1 F3)(-&H)

5.2 Displacement field
The global displacements (u, w) at any point (&, n) are given by the displacement field

{x} =§1¢f<f>!5::: + ﬂéé dh(é)hi{ ~sin z:}ai

which may be used for both the displacement increment u and the total displacement *u. The
three degrees of freedom at any node i are the displacements u;, w; and the rotation «; of the
plane section defined by the angle 6;, see Fig. 3. The first term in equation (41) represents the
mid-surface displacement and the second term, the effect of the rotations o; at the nodes on
the global displacements at any point (&, ) within element.

(41)

5.3 Strain-Displacement Matrices

The details of the finite element formulation using degenerate isoparametric elements may
be found in[4, 36] and only an outline is presented here. In a local orthogonal coordinate
system (s, ?), Fig. 3, the linear part of the Lagrangian strain increment between configura-
tions B, and B, is related to the displacement gradients by means of a transformation
matrix [A], i.e.

{e} = [AKus} (42)
Ou,; u du, Ou,

where {€}T = e, €49 26, > and {us}" = <—6T -5 E>
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with u,, u, being the displacements relative to this local system (s, t). Recasting equation (6a)
into

2e;; = (Oxy + "ug puy ; + gy + 'ug, Dux, 1 43)

one may write an expression for [A] as

31u1 51u2
(1 + PR ) 0 0 Fr
‘u
[A] = 0 (1 + 7) 0 0 (44)
o'uy 0'u, .
——5- 0 (1 + ‘a‘;“) (1 +’e,)

where le,, is the physical component of normal strain computed not from kinematics but
from constitutive relations condensed using the generalized plane stress conditions for
axisymmetric deformations[4].

The vector of displacement gradients is obtained in terms of the displacement increment

{u} by
{ush = [B(E, mKu} (45)
whence
{e} = [Al[BHu}. (46)

The transformation matrix [B] consists of gradient operators with respect to configuration
B, and consequently remains unchanged throughout deformation history; the transforma-
tion matrix[A], on the other hand, reflects the effect of prior deformations.

The nonlinear part of the strain increment, using equation (6b), is obtained as

(5141 2 N (8u2)2
Hss 6s) Os

1
Nog =§ (“/")2 47)
ds Ot

which can be represented symbolically as
1
fnh =3 )" (H1(w) (48)
The matrix operator [H] is composed of three submatrices, i.e.
[H]T = [[Hss] [HOG] [Hsl]]
These submatrices are given by

[H,(¢, m] = [BI"[Q;][B]. (49)

In this equation, [Q], [Q] and [Q),,} are 4 x 4 matrices consisting of zero elements except
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for the following elements which are unity—[Qli, 1anas,4, [Qoolz,> and [Q];, 5. The

operator [H] depends only on [B] and, hence, remains unchanged through the deformation
path.

5.4 Stiffness matrices, load vectors

The stiffness matrices and load vectors are obtained, following the methodology of the
finite element method, using the linearized incremental virtual work expressions together
with strain—displacement and stress—strain relations. Using equations (9, 46, 48) and neglect-
ing the stiffness due to load (equation 10a, b), one may obtain the incremental and geometric
stiffnesses, [K,] and [K;], respectively, as

+1 ,+1
(Kol =2n[ [ [BITIATICHANBI(, n) dn d¢ (50)
(Kel=2z| [ ('STH" mdnde (s1)
where
[H7 = 70 it | [Hy] + [H, )

The applied pressure-type lozag¢-«g 1s given by

CRI=2n 1 2l FTTNIAE) de (52)
where [1F] is the matrix of deformation gradients in configuration B, relative to B,, and N
the vector containing components of the outward normal N. The internal nodal resisting

forces required to equilibrate the internal stress field is
+1 .41
CFY=2n] [ BIIATCS)E ) dndg. (53)
-1 -

Finally, in the case of viscoplastic analysis, the last term in equation (15b) gives rise to
additional viscoplastic pseudo-loading and is given by

Ry =2n [ [ [BITAVS'ir(e, n) dn dg (54)

where {S¥*} is the time-dependent Piola—Kirchhoff viscoplastic stress increment computed
using equation (14b).

Numerical evaluation of these integrals is achieved most efficiently by carrying out the
integration over the shell thickness separately. This can be achieved by proper decomposition
of kinematic and stress quantities that depend on both £ and #. While integration along the
meridional direction is performed using Gaussian quadrature, it is advantageous to use
Simpson integration in the transverse direction since it is capable of detecting the onset of
yielding promptly in the case of elastic-plastic deformation.

6. SOLUTION METHOD
The incremental finite element equations of equilibrium are obtained as
(Kol + [KD{u} = *R} — {' F*} + {R"}. (55)

The equations are solved repetitively using Gaussian elimination to give a modified incre-
mental solution that takes into account the lack of equilibrium at any step in the manner of
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a one-step Newton iteration scheme. In elastic—plastic analyses the stress—strain transforma-
tion matrix [C] is updated at each step for use in the computation of elastic~plastic incre-
mental stiffness whereas the elastic stress—strain transformation {E] is used throughout in
viscoplastic analyses. The load at any step is specified as a fraction of the total applied load
and the internal resisting force vector {{F®} is subtracted to obtain the incremental load
vector. In the case of viscoplastic analyses the load factors are given as a function of time and
the incremental solution is advanced by specified time increments during each step.

The use of time in viscoplastic analyses as an artifice for obtaining elastic—plastic solutions
requires the application of a number of time steps at a constant load level until an equilib-
rium state is reached. These time steps must be such that the viscoplastic strain increment at
any point in a body is not greater than 10 to 20 per cent of the accumulated strain at any
instant, failing which stability problems may arise in the solution algorithm. A possible
scheme for automatic selection of time steps is presented in the work of Zienkiewicz and
Cormeau[13].

7. NUMERICAL EXAMPLE

The theory presented in this paper has been applied to develop computer programs for
nonlinear elastic—plastic and elastic—viscoplastic analysis of axisymmetric shells subjected to
axisymmetric loads. The case of a torispherical pressure head under uniform internal pres-
sure is taken up here to serve as an illustrative example. The shell is shown as an insert in
Fig. 4 and the pertinent dimensions are indicated therein.
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Fig. 4. Elastic—plastic analysis of torispherical pressure head.
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7.1 Elastic-plastic analysis

The material was assumed to be elastic—perfectly plastic and to have the following
properties: Young’s modulus E = 30 x 10° psi, Poisson’s ratio v = 0.3, and yield stress
o, = 30,000 psi. A total of 20 finite elements were used to discretize the shell from the apex
to the support. Eight equal elements were used over the sphere, eight equal elements over the
torus and four elements over the cylindrical portion. Four Gaussian integration points were
used in the meridional direction and eleven Simpson points across the shell thickness. Very
refined load increments of 5 psi were applied in the nonlinear range in order to obtain an
accurate solution.

This shell was studied earlier by Yaghmai[2] using the incremental formulation based on
moving reference configuration, and by Larsen[4] who used a Lagrangian formulation. The
load-deflection curve for the apex displacement is plotted in Fig. 4 and compared with the
results of Yaghmai (Ap = 7.5 psi) and Larsen (Ap = 10 psi). The linear solution given by
Yaghmai is also plotted in the same figure. The present results indicate that the nonlinear
behavior of the shell is softer than predicted in the earlier works. This is due to the use of
smaller load steps which enable the softening of the system due to plasticity to be more
accurately taken into account. However, the load-carrying capacity is still considerably
higher than in the linear analysis and can be taken advantage of in the design of such
structures.

7.2 Elastic-viscoplastic analysis

The elastic—viscoplastic behavior of the pressure head was studied next, assuming the
same elastic—perfectly plastic material properties used earlier to represent the reference
static stress—strain curve. The finite element discretization was also the same as in the
case of the elastic—plastic analysis.

Solutions were obtained for four different values of the material viscosity coefficient y
(from 400 to 5000 sec™') and the internal pressure was applied at the rate of 10 x 10° psi/
sec. Inertia effects were neglected but geometric nonlinearities were included in the analyses.
Figure 5 shows the plots of internal pressure vs apex deflection for these viscoplastic analyses
and also the elastic-plastic solution obtained in Section 7.1. It can be observed that, at
lower values of y, the viscoplastic solutions are stiff and indicate higher load-carrying
capacity (tending toward elastic behavior as y approaches zero). However, as y increases the
solution comes very close to the elastic—plastic solution, as may be expected from the dis-
cussion in Section 4.3. The two methods of obtaining elastic—plastic solutions using the
viscoplasticity formulation were also pursued and the results are discussed in the following
sub-section.

7.2.1 Elastic-plastic solutions using viscoplasticity. Elastic-viscoplastic solutions are
presented in Fig. 5 for four different values of y. Since an elastic-plastic solution is expected
as y — o0, a simple extrapolation procedure is used as shown in the auxiliary plots in Fig. 5.
The apex displacement w is plotted as a function of 1/y at two selected levels of internal
pressure, 450 and 500 psi. For instance, the deflection at 450 psi for the four different values
of y are plotted and joined by a curve which can then be extrapolated to obtain a value of w
at 1/y =0, i.e. y = oo. In this case, the extrapolated curve indicates that the apex displace-
ment at 450 psi internal pressure would be about 0.265 in. for an elastic—plastic solution.
Similarly, an apex displacement of about 0.6 in. is predicted at 500 psi for an elastic—plastic
pressure head. This procedure may be used to obtain the elastic-plastic apex displacement
at any desired load level.
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Fig. 7. Apex deflection vs. time—Elastic—plastic analysis of torispherical head using viscoplas-
ticity formulation.

This pressure head was also analyzed for elastic—plastic behavior using the second method
described in Section 4.3.1 in which time is used as an artifice in the viscoplasticity solution.
The elastic-viscoplastic solution for y = 400 sec.™! given in Fig. 5 was carried out until the
internal pressure reached the value of 450 psi. Then the solution was allowed to progress
with time towards a steady state elastic—plastic solution. Figure 7 shows the displacement—
time curve reaching a steady state at about 0.265 in. and this is also indicated in the load-
displacement graph in Fig. 6. The elastic-plastic solution of Section 7.1 is also plotted in
this figure. The pressure was then increased to 500 psi using 10 psi increments in the visco-
plastic analysis. Once again, displacement was allowed to increase with time in an artificial
viscoplasticity solution. The solution reached a steady state at about 0.61 in., as can be
seen from Fig. 7. It may be observed now that these steady state elastic—plastic displace-
ments compare excellently with the results obtained by extrapolating for y tending to infinity.

Comparing these results with the elastic-plastic solution taken from Section 7.1 it appears
that this pressure vessel has an even softer behavior and lower collapse load than indicated
by the extremely refined elastic-plastic solution. Hence, caution must be exercised before
accepting such an analysis to have converged if the results therefrom are to be used for
design purposes.

This example clearly demonstrates the capability of the viscoplastic analysis program to
arrive at elastic—plastic solutions. The approach using a large value of y in the viscoplastic
analysis appears to be more economical than the other in which stress redistribution leads
to steady states. This is due to the well known disadvantage of the initial strain formulation
which requires the latter scheme to use a large number of pseudo-time steps or iterations,
especially as the stiffness becomes very small. In the present example, both approaches,
however, required about the same amount of computer time because four analyses (using
different y parameters) were used for the extrapolation technique. In contrast to these

1JSS Vol. 11 No. 1--B
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methods, the direct analysis using the theory of plasticity required substantially less com-
puting effort. Nevertheless, in the case of important and sensitive structures, it is desirable to
have independent alternate methods which may be used to verify the accuracy and reliability
of any particular analysis. Furthermore, the viscoplasticity approaches might be rendered
competitive if automatic stepping techniques(13] are implemented to find the optimal time
increment to be used at any time.
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AGcTpakT — B mepBriit pa3 naetca obwas ¢popMyaupoBKa aHanu3a OoJbuMX aehopmarmii
U1 [UTACTHYECKMX M BA3KOILIACTHYECKMX 3aja4. OnpefessioTcs ypaBHCHHS PaBHOBECHS U3
BapHALIMOHHOM GOPMYTHPOBKH NpHUpalLEeHAs, HA OCHOBe criocoba JlarpaHika onMcaHAs OBHXKeE-
HUA. BO BceX KOHCTHTYTHBHBIX 3aBHCHMOCTAX IPHMEHSIIOTCA CUMMETPHYECKOE HallpshKEHHE
IMuons-Kupxrodhda wu pepopmaumsa Jlarpamxka. IlyTemM HCHO/B30BaHHSL BbIPOXICHHBIX
H30MapaMETPUYECKHX 3JIEMEHTOB, KOTOpblE AAIOT BO3MOXXHOCTb peIfIKCalUH THIIo3bl Kupx-
roda-Jlasa, ceqManM3UpyeTCA MPOLECC pacyeTa Ui aHAJIN3a KOHEYHOTO 3MieMeHTa 060510~
Y€K BpalIEHHs], IMOABEPKEHHBIX AECHCTBHIO OCECUMMETPHYECKOM Harpy3kd. ns pemeHus
JIMHEAPH30BAHHbIX YPAaBHEHHH PaBHOBECHS [UTA NIPUDPALLEHHSA IPHMEHAETCA peobpa3oBaHHbIH
METOI MpHpALIEHHs, KOTOPBIA HCIIONb3YET UCIPABJICHHE PABHOBECHA U KaXAOro 1iara.
JaroTcsi ABa MOAXOOBI K PELICHHIO T NpHCHocoOneHus GopMyTMPOBKE B paMKax BS3KO-
MIJACTHYHOCTH, C LEJBIO HCIOJBL30BAHUA HEBA3KMX DPEIIEHHH TCOPHMH IUIACTHYHOCTH; OIHH,
3aK/HOYAIOUIMA B ceBsi KCTPAMOIISLUHIO Pe3ysIbTaToB, KOraa Ko3(GHIHEHT BA3KOCTH CTpe-
MHTCA K GECKOHEYHOCTH M APYroM, B KOTOPOM TOJIYYAIOTCS PELICHHS Uil TUIACTHYHOCTH,
[PUMEHASA BPEMS KaK H300peTeHHE B aHAH3€ BA3KOIUIACTHYHOCTH, MOKAa IOCTHTaloTCA
COCTOSIHMSI PABHOBECHsSI IUJIA KaXOOTO MOCTYMATENBHOIO YpOBHS Harpy3ku. Ilpencrasmserca
nmoApo6HOoe UCCIEAOBAHMAE HEMHEHHOTO MOBEAEHHA TOPOC(hepHYEeCKOTO cocylla AaBiIeHHs, C
LENBIO WILTOCTPAUNH 3(DHEKTHBHOCTH YHCIIEHHBIX METOAOB.



